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Analytic calculation of arbitrary matrix elements for the boson exponential quadratic operator
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Making use of the transformation relation between the ordinary form and the antinormal product form of
boson exponential quadratic operat@®£QO’s), we present an effective method which can be conveniently
used to calculate arbitrary matrix elements of BEQO's. By this method, some important matrix elements have
been calculated analytically. As a preliminary application, we obtain the exact solution of the density matrix
and partition function for the general boson quadratic Hamiltonian without any information for the energy
level. As a natural extension, we also obtain the partition function for a general fermion quadratic system.
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PACS numbegps): 05.30—d, 03.65.Fd, 42.56:p, 74.20-z
. INTRODUCTION al anda; (i=1,2,...n) aren-mode boson creation and

annihilation operators, respectively. Thus, without any loss

It is well known that the calculation of matrix elements of generality, the ordinary form of a BEQO can be written as
for boson exponential quadratic operat@EQO’S) plays a  [1]

fundamental and important role in modern quantum physics

(e.g., the calculation of the density matrix, Feynman’s propa- Q=exp(} ANEBT\}, 2)

gator, scattering matrix, ejc.However, to the best of our

knowledge, till now only a few special cases have been calwhereN and=ge C2"*2",

culated analytically, and no one has given a universal

method to calculate matrix elements of BEQO's. 0 I
Recently, Wang and co-workef$,2] proposed a general 2g= _ '

approach to transform a BEQO into its normal and antinor-

mal product forms from the viewpoint of linear quantum ofiaaN S —

transformation theoryLQT) [3,4]. Since Refs[3,4], LQT andN satisfiesN2g=N2p.

has been used to solve a series of physical probl&.  Denoting

Motivated by Refs[2—4], in the present paper we develop a

universally effective method to calculate arbitrary matrix el- N A D

ements of BEQO's analytically. By this method, we analyti- e = B ¢/

cally calculate the transition matrix elements of BEQQO's in

the particle-number representation, and the matrix elemenigen, by Eq.(5) of Ref. [2] (or see Appendix A we can

one can obtain analytic expressions of the density matrix and

partition function for a general boson quadratic Hamiltonian 1 -

without any information of the energy levels a special Q:eXP[EANEBA]

case, the density matrix and partition functions of coupled

nonidentical harmonic osillato(€NHO’s) have been briefly -A"ID 1-A"Y
discussed. As a natural extension, we also obtain the parti- =[detA]” Y%texp = A ~  Sa-1 AT,
tion function for a general fermion quadratic system. —-A BA
()
Il. GENERAL FORMULA OF CALCULATING MATRIX . .
ELEMENTS OF BEQO'’s where the notation ¥ -+ means the antinormal product; for
2 2 .
_ , ~ example, we have &?a’+a'"at=a%a’+aa’", while the
Let us introduce the following fundamental operator: well-known normal product notation-:-: means that
A=(a'F) ) -a%a’+aa:=ata?+a'a [7].
o An arbitrary matrix element of the BEQO can be written
where as
().
a'=(al,a}, ... a),
In Fock space, state vectofg| and|¢) can be expressed as
a=(aj,ap, ...,a,). follows:
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(¢l=(0ly(a), (9]0 o) =[detn] YX0|+y(a)eV2aBA a
=p(ah)|0), - e
|(’D> (’D( )| > % E Cn]manaTme—(ﬂZ)aTA 1DaT@(aT)¢|O>.
where y(a) (¢(a')) is a function about(a’). Using Eq. n.m=0
(3), we have 6)
Qlo)=[detd]” Y¥0|ty(a Considering the supercomplete multimode coherent §&te
#1Q|p)=[detA] p(a)
-A"'D 1-A?
cexpl Al — AL [ 2xziz-1, ©
27 11-A1 BA!
4)  where
Let us denote 2=(2122, - Zn), dzzziﬂl [TI}
. - 1
fexga'(1-A 1)a]¢=n§;0 Cpma"a’™. 12)=12,.2,, . .. ,Zn>=exp‘ -5 2'z+a'z{|0).
Thus Eqg.(4) can be rewritten as Inserting Eq.(6) into Eq. (5), we obtain
_ 3BA-1 - m _ gt a—1n 1
(plle)= [ dzrden] ol tu@e B S ¢, anjzyziale” M2 g (al30)
=[deA]” 1/2f dzz<o|ilﬂ(z)e(l/z)ZBA*lznmz:O Cn,mZ“|Z><Z|Z+me‘ (112) zTAlezT(P(ZT)|0>
/ 1 -A"ID -AL (T
=[dew\]*12f d?Z y(Z)ex E(z,zT) A1 Batl e(Zh), (7)
|
where we use the following relation: o ﬁ .
gD(a‘r):eaa a'+a ﬁ( aﬂ- J),
(012)=(z|0y=€~ V272, =1
Now we transform the calculation of the matrix element intowherea,a’ €C, 8,8’ C", m; ,n;=012..., and
a simple integral of th&€ number. Obviously, the operation
of the C number is much more convenient than the operation Ez(ﬁ B 8.)
of the operator. For the convenience of further application, SUCHERE LS
let us consider the following/(a) and ¢(a'): _
] B'=(B1.Bs - - Br).
= _mi o'aa+ag’
va) (II;[]. % )e ' Then Eq.(7) turns into
|
12 m 17z+7p' 1 3 “ATD - ; PAARTAr i 1| 42
— - . i a _ —~ — a. T
(4] Q] 0)=[detA] J iﬂl z" e exp 5(2".2) = oAt S)(e ,-Hl zI"|d?z
n A n ) -1 -1 —~
d\m d\n 1 ~ [—AT'D—2a —-A zt ~ —
=[deta] 12 (—) (—) fex -=(Z'z ~ ~ +(B+3,8'
[ ] {LL dri ll_ d% 2( ) _A1 BA 1—-24' 7 (B B

8

Jir
%) |
z

Using a Gaussian multiple intergral formula, we have

r=s=0
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f d2z exp{ - %(ZT,E)Q

whereQza, Q is nonsingular, andi,ve C".
Thus we can easily obtain the analytic expression of(BQg.

~

ZT
Z

[

) —_ |z
+(u,v)

}I[(—l)”delQ]mexpr%(ﬁ,?)Ql(u)], 9

— = -12r n ' n )
A1 —-BA 1-2a’ (d)m' ( d)”J 1~ _~ _
Q|¢p)=| detA de — —| |exp z(B+S,B'+T
(¢l ) <A1D—za -1 ) {Hl ar) |1l \gs S(B+3,8'+T)
—A"D-2a -A"t \ 7Y B+s
X _ ~ 10
-A"! BA™!=2a'| \B'+r]]| _ 10
|
lll. APPLICATIONS
. . . : Q=f 1Z'(Z'|P(Z")d?Z", (12
In this section, we will calculate the matrix elements of
BEQQO'’s in particle-number and coherent-state representa-h
tions, and obtain the density matrix and partition functionsV"€r¢
for a general boson quadratic system by making use of Eq.
(10). , ,
Pz —exiiz''2) [ a?B(- plolp)
A. Calculation of {m|Q|m’}) in particle-number representation Xexp{ﬁTﬁ+BTZ’ —Z’T,B}.
In Fock space, the particle-number eigenstates can be ex-
pressed as |B) is a coherent state. Obviously, the calculation of
(= B|Q|B) is very important to obtaiP(Z’).
nogm For the case of — 8|Q|B), we have
(m=([[] =,
=1 ym;! Wa)=e (B'82—p'a
n tm/ (gt t
=TT aj™ p(ah)=e (B'B2)+a'B,
=1 Jm!l
=hovmg From Eg.(10), we obtain
From Eq.(10), we immediately get the transition matrix el-
ement (—BlQ|B)
AL Bay
/ = -B'B
(mie|m’) deit de(A—la Al ” y
Al —BATN T 1~ AlD AL\l B
_ —(B.-8Hl ~ - ~
= detA de(A_lD A_l ) Xex 2(ﬁ' B )( A—l _BA-l) _BT '
1

i ()]

C. Density matrix and partition function for a boson

A~ D A"l \"1l/g guadratic system
A1 _BAl (r)] Lgt us corjsider a_general guadratic boson system whose
r=s=0 Hamiltonian is described by
(11) - —_
H=a'aa+a'ya'+2ay'a, (14)
B. Calculation of (— B[|€|B) in the coherent-state where a is an nxn Hermitian matrix, andy is an nxn
representation complex symmetric matrix. If we denote
P representation is an important application of the coher- s
ent state[9,10]. In this representation an operator can be N= @ 3’
written as the following diagonal form: 2yt —a )’
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Eq. (14) can be rewritten as (x|e PH|x")
H= 3 ANSpA- 3tra, (19 = M2g— (12) (XX’ +7x)

Since — itra is a constant, for the convenience of discus- At —-BjA, t+1\ ] 12
sion, we could only consider the following Hamiltonian: X| det,de A, 1D, +1 AL

H= 1ANSA. (16) pl ~~)(A11D1+1 At 1(x’)]

Xexp (x',X —~_1 S A -1 .
It is well known that in coordinate representation the density- Ar ~BiA X
matrix elements of the above system are defined as (19
p(X,X",B)={(X1.%, X |e7ﬁl:||xl X! x') Blainzot obtained the exact solution of the partition func-
o e Lizr ik (17)  tion for the HamiltoniarH o= 3;;a;Th;a; [11]:

where 3= 1/kT, andk is the Boltzmann constant. In Fock Tr(e AHo)=de(1—e A"~ (19

space, the coordinate eigenstates can be expressed as . . . . .
pace, g P Equation(19) is very important in the Hartree-Fock approxi-

IX"y=|X}, X5, ... X0) mation of the partition function, because one can always use
_ - it to approximate the partition function of the quadratic
— g Mag— (12 aa+v2alx’ — (12x'x'| gy, HamiltonianH’,
<X| =<X1,X2, o ’Xn| = n/4ef (1/2aa+v2ax— (1/2)Yx'

H' = 2 T” aiTaj + %E Vijk|aiTajakTa| .
i ikl

Denoting . I

However, a more complete quadratic Hamiltonian could be
A, D, described by Eq(16). To our knowledge, no one has ever
B @) obtained the exact solution of the partition function for the

! ! HamiltonianH.

then, from Eq(10), we finally obtain the analytic expression  Using Eq.(18), it is easily to obtain the partition function
of the density matrix elements for the HamiltonianH (see Appendix B

eiﬁN: (

Tr(e*ﬁﬁ')zf dx<x|e*ﬁ'3'|x’>|xzx/

A, °D;+1 Aq
__[A D1 At “xy
xf dx exp{(x,x)( A1 _BA 41 (X>—xx]
Al_lDl Al—l_l —1/2
= delAlde< Ao _ElAll)‘ (20)

Furthermore, Eq(20) can be simplified agalso see Appen- about its energy levels by using the antinormal product tech-
dix B) niqgue. We also note that Bogolubd®2] presented a pro-
R gram to solve the energy levels of the quadratic system, but
Tr(e ") =|dete®N-1)|" 12 (21 the analytic solution of the density matrix and partition func-
tion for a boson quadratic system has never been given, to
Up to now, we have first obtained exact solutions of theour knowledge. Indeed, our method at least has two advan-
density matrix and partition function for a boson quadratictages: First, from the theoretical point of view, using E21)
system. It is easy to verify that the result of EQ1) is  one can directly discuss some global features of the system.
consistent with that of Blainzot. We would like to emphasizeSecond, from the point of view of practical computation, Eq.
the following: Usually, the partition function can be evalu- (21) can greatly reduce computation time and simplify the
ated only after we have some knowledge about the energyomputation program, because in Eg1) the crucial com-
levels of the system. But for the quadratic system we carputation step only involves the computation gN)"/n!,
now evaluate its partition function without any knowledge and in the sense of approximation one can interrupt the com-
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putation of the computer at some suitable numbeafter
arriving at the desired accuracy.

In a recent papdrl3], Fan and Chen obtained the solution
of the density matrix for a triatomic linear molecule which is
a type of three-dimensional CNHO. However, in the litera-
ture the solution for an arbitrary number of CNHO is still left
as a challenge for the futufé@3,14]. By using Eqs(18) and
(21), we can directly obtain the density matrix and the par-
tition function for an arbitrary CNHO, whose Hamiltonian is
given by

n ls 2 1 n
- i - .~
HZELmi+§m'wi Xi +%i,j2:1 KijXiX;
=P(2M) TP+ XA MO2+ 1K)X, (22)
where
P=(P1,Ps, ... Py, X=(X1.Xz, ... Xn),
my 0
m;
M: 1
0 m,
w1 0
w2
0= v K=(Kij)nxn-
0 wn
Defining
1 h
E— I E—
e |2 V2
(X,P)=(a"3) :
1 &
E— _I E—
V2 V2
we easily have
[aiT,aj]=5ij,

- nl4n—

e (12) afat+vaatx— (1/2>?><| 0)

)=

wherex is aC number, thus Eq(22) reads
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H=1(a"3)
2 h2
1 24 1y 1 2,1 _ ~
sMQ“+ 5K oM 2MQ—F2K+2M "
X 2 2 a
%MQZ+%K+W %MQZ+%K—N
= 2 ANSgA,
where
2 2
%MQZ'F%K—W %MQZ'F %K—I—m
N= 2 2
%MQZ‘F%K'FW %MQZ'F %K—m
Let
e PN= iz % .
B, G

Thus, from Eqs(18) and (21), one can directly obtain the
exact solution of the density matrix and partition function for
Eg. (22.

D. Case of the fermion quadratic system
As a natural extension, let us consider the general fermion
quadratic Hamiltonian as follows:
H=b'ab+b'yb"+by'b, (23)

wherea is annXn Hermitian matrix,y is annxn antisym-
metry complex matrix, and

t
n

bf=(bl,bl, ... b1,

b:(bl,bz, P ,bn).

b;r andb; (i=1,2,...n), respectively, are fermion creation
and annihilation operators in-mode Fock space. Equation
(23) can be rewritten as

H= 3 ANAT+ itra, (24)

where

2y

)
Now we would like to point out that one can also easily
construct the antinormal product technique for the fermion
case within the frame of the Grassmann numf@r Thus
after a similar deduction we can finally obtain the partition
function for the fermion quadratic system:

A=(b'b “
_( 1 ) N_ 2')/T
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Z(p)=e (VABU|de(efN+1)[V2 (25)
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APPENDIX A: PROOF OF EQ. (3)

Indeed, operatof) can be regarded as a linear quantum

transformation(LQT) operator. Let us denote

M=eN=

A D
B C/
By Ref.[4], Q andM thus satisfy

QAQ =AM, (A1)
MSgM=M3gM=35. (A2)
Using Eq.(A2), we immediately have
AB—BA=0,
(A3)
AC—-BD=1.
If A1 exists, by Eq(A3) one can obtain
C=A"14+BA 1D, (Ad)
by which matrixM can thus be rewritten as
" 1 0\/A O0\/1 A™ID
M=e=15a1 —1/lo a1/lo 1 |
(A5)

Therefore, the action of) is equivalent to the product of
three LQT operators, i.e.,
00,00, (A6)

where(), , Oy, and(Q) _, respectively, satisfy
. 1 0
Q,AQT=A EA-1 o)
A 0
0 AL

1 AD
0 1

QAQy=A

QAQ:le(

From Eq.(20) of Ref.[3], we can easily obtain

Q. =exp{: AN, SgA}, (A7)

Qo=exp( ANgS gAl, (A8)

PAN, DONG, ZHANG, HOU, AND WANG

Q_=—exp{2 AN_SgAL, (A9)

where

0 0 InA 0
N.+= BA~! 0/’ No={ o ja-1)’

0 AD
N = .
0 0

Becausd) . , O, and()_, respectively, only contain terms

of aja;, ala;, andala/, using the following formuld7]:

ea*lnAa—%—trA: ieaT(l—Afl)a:t, (A10)

and Eqgs.(A6)—(A9), one can then obtain the antinormal
product expression df:

QAN:QJrQOg,
=% 1A
=+ ex E

Obviously Q 5y performs the same LQT, i.e,

QaAQn=AM.
Thus by Ref[4], we have
Q=constX Qs

where const is & number. Imitating the calculation of the
Appendix of Ref.[1], it is easy to calculate the expectation
values of() and ),y in the vacuum state:

(0]0[0)=[deLC]™ *2
(0]Qan|0Y=[detA/delC]™ V2
Finally, we arrive at Eq(3),

Q=[deta]” ¥2Q .

APPENDIX B: DEDUCTION OF EQS. (20) AND (21)
Proof 1: Denoting

A" D, +1 A1 LT W
At -BiA; +1)  \u v/
we have
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Tr(efﬁﬁ) eiBNEBei’BN:EB
W -11-1/2 and
=7 ”’Z[(—l)”detAldet U V) }
C]_:A171+51'R]J_7181.
dex EXW(T+W+U+V— 1)X} Therefore,
T w| ! ~ c, -Dj
=[(=1)" BN — —BNy -—1_
( 1) detAlde(U V) e EBe EB (_Bl RI‘_ )
—1/2
X de 1-T-wW —-T-W Thus
-Uu-v 1-U-V -
_ Cl_l _Dl
T w1t /-1 o0 |de(efN—-1)|=|de ~
= (_1)ndetAlde U Vv + 0 -1 Bl Al_l
—1/2 <Al_1+ﬁ]’.ANl_lBl_1 _’[Ti>‘
0o -1 =|de —~
A7D;, AI-10]712 = de<A11_1 —DA™
=[(=1)" . — — g
( )dewldet(All_l —BlAll” B, Al—-1
A171D1 A171_1 - 1/2 . de<_mA~1_l Al_l_l)’
= detAlde‘(Ril—l —ElAl_l) ,K]J__l _Bl
DA AL
Proof 2: BecauseN satisfies =|de —
1-A; -B;

E;:NEB, |d W|
= e 1

g A7lD; A1
Am -1 —BiA

by Ref.[4], one easily finds
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